E-680 Series Universal Data Loggers / Scanners

Manufacturer / Technical Support
Elimko Elektronik İmalat ve Kontrol Ltd. Şti
8. Cadde 21. Sokak No:16 Emek 06510 Ankara / TÜRKIYE

Telefon: + 903122126450 Faks: + 903122124143
www.elimko.com.tr •e-mail:elimko@elimko.com.tr

E-680 scanners / data loggers are designed for panel mounting and should be used in an industrial environment.
O The package of E-680 device contains;
Device
2 pieces of mounting clamps
User manual
Guarantee certificate

Ofter opening the package, please check the contents with the above list. If the delivered product is wrong type, any item is missing or there are visible defects, contact the vendor from which you purchased the product.
O Before installing and operating the device, please read the user manual thoroughly.
O The installation and configuration of the controller must only be performed by a person qualified in instrumentation.
O Keep the unit away from flamable gases, that could cause explosion.
O Do not use alcohol or other solvents to clean the device. Use a clean cloth soaked in water tightly squeezed to gently wipe the outer surface of the device.
O It is not used in medical applications.
EU DIRECTIVE COMPLIANCE
Low Voltage Directive
EN 61010-1
EMC Directive
EN 61326-1
FlimkoE-680

1. Introduction 2-3
1.1. Technical Specifications 4-5
1.2. Type Coding 6
1.3. Dimensions. 7
1.4. Panel Mounting 8
2. Usage. 9
2.1. General 9-12
2.2. Configuration Pages. 13
2.2.1. General Configuration Page 14-16
2.2.2. Alarm Configuration Page 17-19
2.2.3. Input Configuration Page. 20-25
2.2.4. Security Configuration Page 26
2.2.5. Calibration Page 27-30
2.3. Warning Messages. 31
2.4. E-680 Connection Diagrams 32-35
2.5. E-680 Jumper Settings 36-37
2.6. E-680 Communication Connection. 38

1. Introduction

E-680 series universal data loggers / scanners are advanced new generation microcontroller based industrial instruments, dimensions of $96 \times 192 \mathrm{~mm}$ compatible with IEC/TR 60668 standards. Universal inputs and outputs of the device can be programmed easily by the user. E-680 series indicate measurements from 32 different points on instrument display and determines alarm conditions according to the result of comparison of two set points for each channel. The alarm conditions can be directed to the common alarm relays and / or to the independent relays. The instruments can be connected to an RS-485 communication line and the data can be collected and stored in a centrally located PC.

Figure 1.1. E-680 front view

1. Introduction

U High reading sensivity with 16 bit resolution

- Infinite life time and high isolation voltage semiconductor multiplexer relay
\square Standart RS-485 Modbus communication interface
- 2 common alarm relays and 16 independent alarm relay output

Up to 2 configurable analog outputs for retransmission output

- Each channel can be programmed independently
- 2 set points for each input
- Possibility of defining alarm types for each set point
- Possibility of defining hysteresis for each set point

Directing alarm states to a common or independent relay

- Programmable display and scan intervals
- Flow rate calculation with compansation up to 10 channels
\square Arithmetic operations (add, subtract, multiply or divide with a constant) on physical channels
- Possibility of connecting up to 31 instruments to a PC by the same communication line
- Distributed system structure

1.1. Technical Specification

Input Types	Thermocouple: B, E, J, K, L, N, R, S, T, U Resistance Thermometer: Pt-100, CUST Voltage: $0-50 \mathrm{mV}, 0-1 \mathrm{~V}, 0.2-1 \mathrm{~V}, 0-10 \mathrm{~V}$ (Linear) Current: $0-20 \mathrm{~mA}, 4-20 \mathrm{~mA}$ (Linear)
Alarm Outputs	SPST-NO 250 V AC 3 A relay
Display Resolution	$1 / 9999$
Display Type	9 digit, 14 mm 7 segment led display
	Thermocouple: $\left(\pm \% 0.5\right.$ or $\pm 1^{\circ} \mathrm{C}$ of indicated value) ± 1 digit max. Pt-100: $\left(\pm \% 0.5\right.$ or $\pm 1^{\circ} \mathrm{C}$ of indicated value) ± 1 digit max. Voltage $/$ Current: $\pm \% 0.5 \mathrm{FS} \pm 1$ digit max.
Accuracy	16 bit
Analog Digital Converter	12 bit
Digital Analog Converter	$0.2-9.9$ sec.
Input Scan Time	$1-99 \mathrm{sec}$.
Display Scan Time	120 dB at 50 Hz
Noise Suppression	

1.1. Technical Specification

Operating Temperature	$-10^{\circ} \mathrm{C},+55^{\circ} \mathrm{C}\left(14^{\circ} \mathrm{F}, 131^{\circ} \mathrm{F}\right)$ (With no condensation or icing)
Storage Temperature	$-25^{\circ} \mathrm{C},+65^{\circ} \mathrm{C}\left(-13^{\circ} \mathrm{F},+149^{\circ} \mathrm{F}\right)$ (With no condensation or icing)
T/C Temperature Compansation	$0^{\circ} \mathrm{C}-50^{\circ} \mathrm{C}$
Power Supply	$85-265 \mathrm{~V}_{\mathrm{AC}} / 85-375 \mathrm{~V}_{\mathrm{DC}}$
	$20-60 \mathrm{~V}_{\mathrm{AC}} / 20-85 \mathrm{~V}_{\mathrm{DC}}$
	$4 \mathrm{~W}(7 \mathrm{VA})$
Protection Class	IP 66 Front Panel (NEMA 4X)
	IP 20 Rear Case
	NA Contact $250 \mathrm{~V}_{\mathrm{AC}} 3 \mathrm{~A}$
Relay Electrical Life	10.000 .000 operation*
Memory	$>1.000 .000$ operation (1/10 load)
Weight	EEPROM max. 10^{5} writing

* The relay life differs according to the usage configuration. When the relays are old, their contacts could melt or burn out.
1.2. Type Coding

6

Coding Example:

E-680-16-2-0-08-1-0

- 16 input, 2 common relay
- 8 independent relay output
- RS-485 communication
- 85-265 $\mathrm{V}_{\mathrm{AC}} / 85-375 \mathrm{~V}_{\mathrm{DC}}$ supply

Note: XX must be codded as ' 0 ' for devices having more than 16 channels.

1.3. Dimensions

Note: Drawings are not in real scale. Do not use for scaling.

1.4 Panel Mounting

O E-680 controller should be installed inside a suitable grounded metal enclosure (panel). This must prevent the live parts being accessible to human hands and metal tools.
O E-680 controller does not include a power switch. Therefore, the power supply of the controller and power outputs must be wired through the proper fuse or circuit breaker.

O To minimize the pick-up of electrical noise, the wiring of low voltage lines, particularly the sensor inputs should be routed away from the high-current power cables. If this is not possible use screened cables and apply grounding.
O The cables used for powering the controller and the power outputs must conform to the standarts IEC 60245 and IEC 60227.

Figure 1.2.
Panel Cutout and Minimum Spacing

- Cut a hole in the panel. (See the figure for overall dimensions.)Slide the controller into the cutout from the front of the panel.There are three clamp holes located at the top and the bottom side of the device. Use the convenient ones and fit the mounting clamps to the controller ensuring the lugs are located in their slots.
\square Fasten the mounting clamps using the retaining screws.

2. Usage

2.1 General

Elinkn

2.1 General

 button which are used for programming and manual controls. Program led lights when entered to the configuration mode, and Manual led lights during Manual mode, Set 1 led lights during SET 1 common alarm and Set 2 led lights during SET 2 common alarm period. During normal mode, channel numbers are displayed in the first two digits, measured values in the digits 4-7 and alarm information in the last digit of the 9 digit LED display. Channel information can be watched automatically or manually. In automatic mode, channel information can be monitored consecutively. The display time of a channel data is equal to $4 \boldsymbol{f}$ parameter in seconds. Am button is used for switching from automatic to manual or manual to automatic mode. In manual mode only one channel can be monitored, channel number is selected by ∇ and Δ buttons.

Figure 2.1. Operator Page

2．1 General

When the device is in normal operation state，the © button can be used to switch to the totalizer and the alarm pages．When the device is in manual mode and the button is pressed，totalizer value is displayed． In this page，simultaneously pressing $⿴ 囗 ⿻ 丷 木$ and buttons reset totalizer． Next to the totalizer page，alarm pages are reached．All alarms（Set 1， Set 2）can be seen together in these pages．In the first alarm page， alarms of the channels 1 to 16 are displayed and letter R is shown in the last digit．In the second alarm page，alarms of channels 17 to 32 are displayed and letter B is shown in the last digit．In the third alarm page， status of the output relays R 1 to R 16 are displayed and letter O is shown in the last digit．Figure 2．2．shows the display format of the alarm pages． While in the totalizer or alarm pages pressing the $\mathbb{*}^{\text {b }}$ button reverts to the normal operation page．Alarm status of the channel which are not active or closed for scanning are shown as empty．

2．1 General

Figure 2．2．Alarm Pages

2．2 Configuration Pages

When the device is in the normal operation state，pressing the \square and Ψ buttons simultaneously enters the configuration mode．When the configuration mode is entered，＂Lod＂message is displayed for the security code．Security code is entered by using the buttons ∇ and $\boldsymbol{\Delta}$ ． The factory setting of the security code is＂ 10 ＂．If the correct code is entered，the user is authorized to change all the device settings including the calibration．Otherwise，the rights are only restricted to the settings of the＂Prt［＂page．After this process，PREE $=$ is written to first 5 digit of display and the name of the page is displayed in the last 4 digit．To pass between menus the ∇ and buttons are used．In order to return to the normal operation state，the ${ }_{*}$ button should be pressed．In order to access to any configuration page，the button is used and by pressing this button，the parameters in this page are displayed one by one．In this step，the parameter name is indicated in the first 4 digits of the display， and the parameter value is indicated in the last 4 digit of led display．In order to change the parameter values，the ∇ and Δ buttons are used．To exit from any page the ${ }^{*}$ button is used．

2.2.1 General Configuration Page

GENERAL CONFIGURATION PAGE

Display Interval ($1-99 \mathrm{sec}$) : Channel information display time in automatic mode.

Scan Time ($0.2-9.9 \mathrm{sec}$) : The sampling time of the channels.

Number of Channel ($1-32$) : The total number of the physical and the virtual channels. The virtual channels are used for the results of the arithmetic operation (add, subtract, etc.) on the physical channels
Number of Analog Inputs ($1-15$) : Indicates the number of inputs that will be used. Number of inputs shouldn't be more than 16 for the devices containing relay card. Otherwise relay card will not be functional.

Temperature Unit (D_{L} / ${ }^{\circ} \mathrm{F}$) : Indicates the measuring unit of TC and RT inputs. It will be inactive for other inputs.
2.2.1 General Configuration Page

Device Communication Address (i-3i)

Communication Speed (9.5 / 9.2 / 38.4) : Indicates the number of bits that will be sent in one second as $\times 1000$.

Parity (nonE / odd / EuEn) : Determines the communication parity

Number of Repeat ($(\dot{i}-i$) : Determines the number of scan that is required before any alarm indication.

Control Type 1 (PLLL / Cont) :

Pill 5 : When an alarm is detected, relay RO1 energized for a duration of Pinu. Cont : While in alarm state, RO1 energized continuously.

Control Type 2 (PLiL5 / Lant):
PUL5: When an alarm is detected, relay RO2 energized for a duration of Pinit. Cont: While in alarm state, RO2 energized continuously.
2.2.1 General Configuration Page

Pulse Length ($1-2 \mathbf{s e c}$) : If control type is selected as Pil 5, this parameter determines the energizing period of the alarm relay

1. Analog Output Source $(i-\vdash 5)$: Determines the number of the channel to be retransmitted from 1. Analog Output.
2. Analog Output Range ($0-20,20-0,4-20,20-4$)
3. Analog Output Source $(i-\vdash 5)$: Determines the number of the channel to be retransmitted from 2. Analog Output
4. Analog Output Range (0-20, 20-0, 4-20, 20-4)

2．2．2 Alarm Configuration Page

（continue on next page）

Elimk

2．2．2 Alarm Configuration Page

Alarm 2 Set Point（2Ero／5PRn）

Alarm 2 Hysteresis（0－9999）
 Lo i己 ve Hit are not available．

Alarm 2 Relay No ：It determines which independent relay will be energized at alarm condition． Different alarms can be forwarded at the same time independent relay．If $\mathrm{CH} \mathrm{Ho}<16$ and R2t P selected as Lo己，Hi己，Lo i己 or Hil己 this parameter can be accessed

2．2．2 Alarm Configuration Page

The alarm types and the principle of generating alarms are given in the figure on the right．Alarm parameters are P P．IL $;$
 R2rL．For each channel，set points R $15 P$ and R25P are defined．Those can be directed to common and independent alarm relays according to the values selected for $R \mathbb{L E}$ and RELP．When $R \mathrm{ItP}$ and RELP is selected as ofF，the alarms will not be activated．When alarm type is choosen as Lo i or Hi i related alarm can only be directed to common alarm relays． Those relays are RO1 for Set 1 and RO2 for Set 2．When alarm type is selected as Lo己 or Hi i ，alarm can only be directed to independent relays determined by $R \mathrm{irL}$ and $R 2 r L$ parameters．
 Independent relays are R1，R2，．．．，R16．When alarm type is
selected as Loi2 or $H ; i 2$ ，related alarm is directed to the common and independent alarm relay described as above． Different alarms can be forwarded to the same independent relay．In this case related relay is used commonly by those alarms．r^{P} is valid for all defined alarms，and defines the number of scans for alarm condition．As an example，if $r P$ is selected as 3 ，alarm will be triggered，if the alarm condition persists at least three scan period．$[t: 1$ and $[t 己$ are only valid for common alarms and at alarm conditions it defines whether the relay is energized continuously or during the defined pulse length．$[t$ i determines control type of RO1，and $[t 2$ determines control type of RO2 relay．
Note：When any alarm condition occurs，the device switches to manual mode and indicates the channel information which causes the alarm state．

2.2.3 Input Configuration Page

2.2.3 Input Configuration Page

Sensor Break (Lol H) : Determines process value in the case of sensor break. Process value will be equal to Zero when Lo is selected, and Span when H i is selected.

Zero : It can be adjusted between- 1999 and 5PRin.

Span: It can be adjusted between 2 Ero and 9999.

Input Offset (-1999-9999) : It is used to correct the sensor errors. The value determined by this parameter is added to measured value.

Totalizer (oFF / \bar{n} in / HoLir) :
off:Totalizer off, \bar{n} in:Instantaneous Value=unit / minute, Hoír:Instantaneous Value=unit / hour

2.2.3 Input Configuration Page

2.2.3 Input Configuration Page

2.2.3 Input Configuration Page

The 5LRn parameter of unused channels should be adjusted as off. This reduces the overall channell scan time. If the input type is changed, jumpers on the input multiplexer card must also be organised accordingly. (See Section 2.5 E-680 Jumper Settings) Otherwise reading will be false. Incase of any constant measuring error, this error can be removed by giving suitable value to in 5 parameter.
Example:If the sensor produces $3^{\circ} \mathrm{C}$ more than normal value, error may be removedby adjusting ins parameter to -3 .
Note:When input type is selected as [USt, it will be operate as Pt if there is no custom inquiry.

Table 2.1.

Input Types
t[[u (Thermocouple with cold junction compensation)
$t[$ (Thermocouple without cold junction compensation)
rt (Resistance Thermometer)
OR2D (0-20 mA)
4R20 ($4-20 \mathrm{~mA}$)
OL50 (0-50 mV)
$0.2 บ$ ((0.2-1 V)
Ou io (0-10 V)
RuLu (Average)
[uSt (Special)

2.2.3 Input Configuration Page

Table 2.2.

Lineerization Type	Standart	Measuring Ranges	
		$\left({ }^{\circ} \mathrm{C}\right)$	$\left({ }^{\circ} \mathrm{F}\right)$
L in (Linear)	-	-	
59rt (Squareroot)	-	-	
F[नip(FlowrateSquareroot)	-	-	-
[$\overline{\text { PP }}$ (Flowrate)	,	-	-
b (Type B)	IEC 60584-1	60,1820	140, 3308
E (Type E)	IEC 60584-1	-200, 840	-328, 1544
L^{\prime} (Type J)	IEC 60584-1	-200, 1120	-328, 1562
† (Type K)	IEC 60584-1	-200, 1360	-328, 2480
L (Type L)	DIN 43710	-200, 900	-328, 1652
\cdots (Type N)	IEC 60584-1	-200, 1300	-328, 2372
r (Type R)	IEC 60584-1	-40,1760	104, 3200
5 (Type S)	IEC 60584-1	-40,1760	104, 3200
L (Type T)	IEC 60584-1	-200, 400	-328, 752
\dot{U} (Type U)	DIN 43710	-200, 600	-328, 1112
Pt (Pt-100)	IEC 60751	-200, 840	-328, 1544

When the linearization type selected as $F[\bar{n} P$ or $[\bar{n} P$, related channel can be used for flow rate measurement. Flow rate measurement is calculated using differential pressure principle based on orifice plates with pressure and temperature compensation. In related channel input configuration, $+\{[t,+2$ [2 parameters determine the pressure channel, design pressure, temperature channel and design temperature respectively. When the inft^{2} parameter is set to Rus, related channel will be a virtual channel and input value belonging to this channel is calculated as below.
Input Value $=\left(\mathrm{PV}_{\mathrm{K} 1} \times \mathrm{C} 1+\mathrm{PV} \mathrm{K}_{\mathrm{K2}} \times \mathrm{C} 2+\mathrm{PV} \mathrm{K}_{\mathrm{K3}} \times \mathrm{C} 3+\mathrm{PV} \mathrm{K}_{\mathrm{K}} \times \mathrm{C} 4\right) / 100.0$
($\mathrm{PV}_{\text {KK }}$: Process Value of X. channel, $C X$: Coefficient of X. channel) This input is linearized according to L ind parameter like other inputs to see the input value as process value L ind parameter must be set as L in.
When the channel is on display, pressing $\sqrt{ }$ and together make the sum zero.
The channels of which the channel numbers are greater than input numbers are virtual channels. In these channels input type can

2．2．4 Security Configuration Page

Calibration（on／ofF）：Calibration can be done only by correct security code．In order to reach to calibration page，parameter［RLE must be selected as on．

Security Code ：It can be adjusted between－ 1999 and 9999．When security code is forgotten SLod can be reached if ∇, Δ and $⿴ 囗 ⿻ 丷 木$ buttons are pressed together in 25 sec after the device is energized．

2．2．5 Calibration Page

O The basic calibration of the controller is highly stable and set in the factory．Any erroneous operation in the［RLL page will corrupt the calibration parameter，and measurements will be faulty．The calibration parameters of the controller can be reinstalled in the［RLL page．If accurate calibration devices are not avaible，entering to the［RLL page is not advised．

CALIBRATION PAGE

It is done by applying 50 mV to first channel of the device．Calibration value can be seen on the display．To save this value press the keys $⿶^{*}$ and ∇ together．（Thermocouple，0－50 mV，0－1 V， 0．2－1 V）

Elimkid

2．2．5 Calibration Page

It is done by connecting Type K thermocouple to first channel of the device at $0^{\circ} \mathrm{C}$ ．Calibration value can be seen．To save this value press the keys ${ }^{*}$ and ∇ together．（Thermocouple）

It is done just after D．dEc calibration．To save this value press the keys $⿴ 囗 ⿻ 丷 木$ and ∇ together． （Thermocouple）

Determines the lower value of 1．Analog output．Connect a ampermeter to
1．Analog output of the device．While this parameter is selected，adjust
the parameter value until the meter reading is equal to the desired lower value．
Determines the upper value of 1 ．Analog output．Connect a ampermeter to
1．Analog output of the device．While this parameter is selected，adjust
the parameter value until the meter reading is equal to the desired upper value．
2.2.5 Calibration Page

Determines the lower value of 2. Analog output. Connect a ampermeter to
2. Analog output of the device. While this parameter is selected, adjust
the parameter value until the meter reading is equal to the desired lower value.
Determines the upper value of 2 . Analog output. Connect a ampermeter to
2. Analog output of the device. While this parameter is selected, adjust
the parameter value until the meter reading is equal to the desired upper value

Channel Number ($1-\mathrm{ES}$) : It determines the channel number which will be calibrated.

E-680
2.2.5 Calibration Page

2.3. Warning Messages

During normal operation, channel numbers are displayed in first two digits of the display, the measured value in digits 4-7 and alarm information in digit 9. If there is any fault at the input information, measured value can not be seen. Instead of it, the messages at the following table are displayed.

Message	Description	What To Do
-PEn	Sensor break or not connected.	Check sensor and sensor connections.
HFL	Process value is below the sensor type measuring range.	Check sensor and input sensor type.
oFi	Process value is over the sensor type measuring range.	
nחma	Process value exceeds 9999 (without considering dP).	Check the scale determined by the paremeters dP, 2Ero and 5PRn. Check input value for linear inputs.
-ULUL	Process value under -1999 (without considering dP).	

2.4. E-680 Connection Diagram

Back panel view of $E-680$ device is shown in Figure 2.3.. There are 3 connection blocks X, Y and Z are located on the back panel. Connection group X is used for the processor and the power supply card. Connection group Y is used for multiplexer or relay card. Depending upon the configuration, this block may be used or not. Connection block Z is used only for multiplexer card. The connections of processor and the power supply card is given in Figure 2.4., the connections of relay card that can be used in group Y is given in Figure 2.5. various connections of the multiplexer card that can be used in group Y and Z are given in Figure 2.6., Figure 2.7., Figure 2.8. and Figure 2.9.. The number of terminals on the multiplexer and relay card depends on the type coding. (See Section 1.1. Type Coding)

Figure 2.3. E- 680 Back Panel

2.4. E-680 Connection Diagram

Figure 2.4. Processor Card Connection Diagram
For RS-485 communication line TRXA, TRXB and GND connections are used.

O The terminals $\mathrm{F}, \mathrm{N}, \mathrm{RO} 1, \mathrm{RO} 2$, OUT1 and OUT2 are electrically live. While the instrument is powered, never touch to these terminals.
O Before operating the controller, ensure that the controller is correctly configured. Incorrect configuration could result malfunction

Figure 2.5. Relay Card Connection Diagram
2.4. E-680 Connection Diagram

Figure 2.6. Pt-100 Connection Diagram

Figure 2.7. Thermocouple Connection Diagram

2.4. E-680 Connection Diagram

Figure 2.8. mA Source Connection Diagram

Figure 2.9. Voltage Source Connection Diagram

2.5. E-680 Jumper Settings

The jumper settings are different for $\mathrm{TC}(\mathrm{mV} / \mathrm{V}), \mathrm{RT}, \mathrm{mA}$ and 10 V inputs. The input signal applied to any channel must be compatible with inPt parameter of lCnF Input Configuration Page and jumpers on the input multiplexer card.
Device has 1 or 2 multiplexer card according to the number of channels. Devices, having channel number up to 16 have a single, devices having more than 16 channels have 2 multiplexer cards.
The jumpers are located on the multiplexer cards. Figure 2.10. shows top view of multiplexer card. In order to access to multiplexer cards, dismantle two screws at the back side and remove the cover.
Upper connection group Z is the first multiplexer card. It includes the channels 1-16.
If device has more than 16 channels, channel 17 to 32 are on the multiplexer card located at the middle slot.
In order to reach this card, unscrew the upper two screws and slack the lower two screws and turn the fixing plate.
Then remove the cable of first multiplexer card and dismantle it by pulling from rails.
After completing necessary arragments, first multiplexer card is attached by the same way to its place. Screw the plate to fix the cards again. Finally place the cover.
Multiplexer card address jumpers must not be changed.
2.5. E-680 Jumper Settings

Figure 2.10.

2.6. E-680 Communication Connection

